If it's not what You are looking for type in the equation solver your own equation and let us solve it.
780^2=x^2+x^2
We move all terms to the left:
780^2-(x^2+x^2)=0
We add all the numbers together, and all the variables
-(x^2+x^2)+608400=0
We get rid of parentheses
-x^2-x^2+608400=0
We add all the numbers together, and all the variables
-2x^2+608400=0
a = -2; b = 0; c = +608400;
Δ = b2-4ac
Δ = 02-4·(-2)·608400
Δ = 4867200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4867200}=\sqrt{2433600*2}=\sqrt{2433600}*\sqrt{2}=1560\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1560\sqrt{2}}{2*-2}=\frac{0-1560\sqrt{2}}{-4} =-\frac{1560\sqrt{2}}{-4} =-\frac{390\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1560\sqrt{2}}{2*-2}=\frac{0+1560\sqrt{2}}{-4} =\frac{1560\sqrt{2}}{-4} =\frac{390\sqrt{2}}{-1} $
| 70=30-5(x-3) | | 2x-5x+46=2x+36 | | 15+10x=38+21x+9 | | 2z-2(2z+18)+16=5(2+10) | | 6x2+2x=0 | | 2z-4z-20=5(z+10) | | 28+x=72 | | 4x-9x+2=x-3+5 | | (X+8/8)=(9/4)+(x-8/3) | | 39=3f | | Y=800+0.05(x) | | –2–3q=-2 | | –2–3q =-2 | | -1.3+5.2p=-11.252-1.9p | | –2–3q = -2 | | 5x+20-3=10x-30 | | 5x-8x+9=6x-18 | | (x/2)+7=30 | | 3/10x+7=1/6=x | | |y-27|-|y-19|=0 | | 5x-8+3=4x+31 | | 7x+8x-6x=26+1 | | -2x+x-5=3x-13 | | 52=34-2(x-4) | | 10y+3y=28 | | 3x-5x+50=5x+29 | | 0.65+0.41t=1.65t-1.21 | | 38=30-2(x-2) | | n÷7+7=4 | | 0.375x=3.75 | | 8a+20=4a-4 | | 1y/5=2y/15 |